
The Journal of Systems and Software 68 (2003) 183–198

www.elsevier.com/locate/jss
A conceptual model completely independent
of the implementation paradigm

Oscar Dieste a,*, Marcela Genero b,1, Natalia Juristo c,2, Jos�ee L. Mat�ee c,2,
Ana M. Moreno c,2

a Departamento de Electr�oonica y Sistemas, Escuela Polit�eecnica Superior, Universidad Alfonso X el Sabio, 28691-Villanueva de la Ca~nnada,

Madrid, Spain
b Departamento de Informatica, Escuela Superior de Informatica, Universidad de Castilla-La Mancha, Paseo de la Universidad, 4,

13071 Ciudad Real, Spain
c Departamento de Lenguajes y Sistemas, Inform�aaticos e Ingenier�ııa del Software, Facultad de Inform�aatica, Universidad Polit�eecnica de Madrid,

28660-Boadilla del Monte, Madrid, Spain

Received 23 December 2002; accepted 27 December 2002
Abstract

Several authors have pointed out that current conceptual models have two main shortcomings. First, they are clearly oriented to

a specific development paradigm (structured, objects, etc.). Second, once the conceptual models have been obtained, it is really

difficult to switch to another development paradigm, because the model orientation to a specific development approach. This fact

induces problems during development, since practitioners are encouraged to think in terms of a solution before the problem at hand

is well understood, thus anticipating perhaps bad design decisions.

An appropriate analysis task requires models that are independent of any implementation issues. In concrete, models should

support developers to understand the problem and its constraints before any solution is identified. This paper proposes such an

alternative approach to conceptual modelling, called ‘‘problem-oriented analysis method’’.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Requirements engineering (RE) activity is composed

by four iterative tasks: elicitation, analysis, documen-

tation and validation (SWEBOK, 2000). Of these tasks,

analysis is one of the most critical, due to the huge im-

portance of its goals: (1) understand the problem to be

solved; (2) develop conceptual models (CMs), which

represent the problem understanding; and (3) define the
features of an implementation-independent solution to
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the problem in question, that is, identify the require-
ments to be satisfied by the future software system. CMs

play a central role during analysis, since they make

possible to

• make real-world concepts and relationships tangible

(Motschnig-Pitrik, 1993);

• record parts of reality that are important for per-

forming the task in question and downgrade other el-
ements that are insignificant (Borgida, 1991);

• support communication among the various ‘‘stake-

holders’’ (customers, users, developers, testers, etc.)

(Mylopoulos et al., 1997);

• detect missing information, errors or misinterpreta-

tions, before going ahead with system construction

(Schreiber et al., 1999).

Conceptual modelling is gaining in importance as

software systems become more complex and the problem
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domain moves further away from knowledge familiar to

developers. In complex domains, to understand the user

need becomes more difficult and, therefore, conceptual

modelling grows to be crucial. Several researchers

claim that proper conceptual modelling is crucial since

it helps to represent the problem to be solved in
the user domain (McGregor and Korson, 1990; Bon-

fatti and Monari, 1994; Høydalsvik and Sindre,

1993).

Nevertheless, several authors have argued that the

CMs used nowadays are oriented to specific software

development approaches. This orientation has two re-

percussions: (1) CMs have computational constraints,

that is, CMs developers represent specific implementa-
tion characteristics in the domain models (Bonfatti and

Monari, 1994; Høydalsvik and Sindre, 1993; McGinnes,

1992); (2) CMs prescribe the subsequent development

process, in which the CMs are more or less directly

transformed into design models (Henderson-Sellers and

Edwards, 1990; Davis, 1993; Jalote, 1997; Northrop,

1997; Juristo and Moreno, 2000), and their trans-

formation to a design model related to another de-
velopment paradigm is exceedingly complicated and

sometimes impossible.

This means that the CMs used nowadays are not

appropriate for analysis. In this paper, we propose an

alternative approach that aims to remove the above

constraints. The paper is structured as follows: Section 2

discusses the problems with using CMs identified by

several researchers, and establish the requirements for
an appropriate CM. Sections 3 and 4 describe our ap-

proach for a conceptual modelling process independent

of any development paradigm. Finally, the preliminary

results of applying our approach are discussed in Sec-

tion 5.
2. The computational orientation of conceptual models

The term CM originally emerged in the database

field. CMs were used to represent the data and relations

that were to be managed by an information system, ir-

respective of any implementation feature. Nevertheless,

CMs are used for more than is acknowledged in data-

bases. CMs are used in RE to

• encourage the analyst to think and document in

terms of the problem, as opposed to the solution

(Davis, 1993);

• describe the universe of discourse in the language and

in the way of thinking of the domain experts and

users (Beringer, 1994);

• formally define aspects of the physical and social

world around us for the purposes of understanding
and communication (Loucopoulos and Karakostas,

1995);
• help requirements engineers understand the domain

(Kaindl, 1999).

Taking into account the above definitions, the main

characteristics of any CM can be said to be description

and understanding. That is, CMs should be used by de-
velopers to

• understand the user needs;

• reach agreement with users on the scope of the system

and how it is to be built;

• use the information represented in the model as a ba-

sis for building a software system to meet user needs.

Several authors have pointed out that current CMs

sometimes fail to do their jobs of description and un-

derstanding during analysis. Criticisms can be divided

into two major groups:

• The orientation of the conceptualisation methods,

stressing the fact that most CMs are oriented to get-

ting a computational solution to the problem or need
raised and not to easing the understanding of the user

need. For instance, regarding to object orientation:

� It is argued that object-oriented methods are a

�natural� representation of the world. Nevertheless,

this idea is a dangerous over-simplification

(McGinnes, 1992).

� Object-oriented analysis has several shortcomings,

most importantly in being target oriented rather
than problem oriented (Høydalsvik and Sindre,

1993).

� Object-oriented analysis techniques are strongly

affected by implementative issues (Bonfatti and

Monari, 1994).

Thus, for example, data flow diagrams (DFD) are

clearly guided by functions, the key components of

structured software, and, likewise, the models used in
object-oriented analysis lead directly to software de-

veloped by means of classes, objects, messages,

polymorphism, etc., the basic concepts of object-ori-

ented software.

• The association between CMs and specific ap-

proaches to software development. Here, the use of

a given CM during early phases of the development

limits the number of possible implementation alterna-
tives and means that only the options that are com-

patible with the CM used originally are feasible.

If computational characteristics are included in

CMs, these are linked to a particular implementation

approach, that is, once a given conceptualisation

method has been selected to describe the problem do-

main, it is practically impossible to change the above

method a posteriori without having to reanalyse the
problem. This has also been stressed by several re-

searchers:
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� Because of a poorly understood overlap among

different requirements languages, it is difficult to

change languages mid-project (Davis et al., 1997).

� The use of a CM during analysis defines nearly

univocally how the design shall be done (Hender-

son-Sellers and Edwards, 1990).
� Perhaps the most difficult aspect of problem anal-

ysis is avoiding software design (Davis, 1993).

� It is sometimes mistakenly believed that the struc-

tures produced during analysis will and should be

carried through in design (Jalote, 1997).

� The boundaries between analysis and design activ-

ities in the object-oriented model are fuzzy (Nor-

throp, 1997).
� The CM used preconditions the software system

development approach (Juristo and Moreno,

2000).

Owing to this limitation, if data flow diagrams have

been used to model the problem domain, for example, it

will almost certainly be necessary to use the structured

method in later development phases; whereas a method
of object-oriented development will have to be used

following upon an object-oriented analysis. Therefore, if

we intended to switch development paradigms, that is,

for example, pass from a data flow diagram to an object-

oriented design, this transformation would lead to an

information gap that is very difficult to fill. This occurs

because each CM acts like a pair of glasses used by the

developer to observe the domain and user reality. These
glasses highlight certain features, tone down others and

hide others. Once the real world has been filtered through

the CM, it is difficult to retrieve anything that has been

lost or condensed, even if the later development process

requires this information. The only way of recovering the

features lost in the CM filter is to reanalyse reality using a

different pair of glasses; that is, to repeat the operation

using another CM. Authors like Coleman et al. (1994),
Champeaux et al. (1993) or Wieringa (1991) have already

discussed this situation, addressing the incompatibility

between the CMs used in the structured approach and

object-oriented CMs, owing to the conceptual difference

between the elements used in both approaches.

In short, the software system development approach

can be said to be preconditioned from the very start, as
soon as the CMs are built. The problem with including

computational considerations within the CM is that

developers are forced to make a solution-oriented deci-

sion during the early development phases, when the

problem to be solved is still not well enough understood.

This means making design decisions when not all the

information relevant to the problem is known. Devel-

opers thus run the risk of making the wrong decision,
because they are not in possession of all the information.

Excepting trivial problems, this precondition implies
that the development approach is chosen before the user

need has been understood, which is the job of concep-

tual modelling. Even worse, very often the CMs selected

are models with which developers are familiar, models

called for by individual standards or even, as specified

by Mylopoulos et al. (1999), the models that are ‘‘in
fashion’’. So, in the era when the structured approach

was in vogue, techniques such as DFDs were used for

conceptual modelling, whereas, today, with the rise of

object-oriented programming and design, techniques

like object diagrams, interaction diagrams, etc., are

employed for problem analysis.

In order to avoid the commented problems of current

CMs, they should include all the information required
about the problem for developers to later address the

software system that is to solve the user problem. In-

deed, it is needed that conceptualisation methods meet

the following:

• Understanding the need raised by the user before

considering an approach for developing a software

system that meets this need.
• The understanding of the need must be independent

of the chosen problem-solving approach, that is, it

must not precondition the use of any development

approach.

• Having criteria for deciding which is the best develop-

ment approach once the user need has been under-

stood.

These criteria can only be met by redefining the

conceptual modelling process as it is now carried out in

the RE analysis task.
3. An implementation-paradigm independent conceptual

model

The proposed approach, called ‘‘problem-oriented

analysis method’’ (POAM), tries to meet the above-

mentioned criteria, and is characterised by (1) using

representation diagrams, which we call generic concep-
tual models (GCMs), that do not presuppose any im-

plementation paradigm; (2) defining a detailed analysis

process; and (3) deriving, from the GCM, the best-suited

CM (that is, a CM now used in RE, like DFD, use cases,

etc.) to continue with development according to the

methods used nowadays. The following sections present

the main components of the proposed approach, that is,

the GCM, which is described in Section 3.1, and the
POAM process, which is discussed in Section 3.2.

3.1. Generic conceptual model

The CMs currently used in software engineering have

to be used exclusively, that is, mostly rule out the use of
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a complementary CM. In some cases, when using a

DFD, for example, the use of supplementary notations,

such as process specifications or even the entity/rela-

tionship model, is permitted, although these are sub-

ordinated to the process diagram set out in the DFD.

The GCM proposed in this approach is based on
complementariness. Instead of using a representation

schema that dominates the modelling process, three

complementary representation schemas are used. Com-

plementary means: (1) each schema supports the others,

satisfactorily recording information they do not repre-

sent and (2) the information in one schema can migrate,

that is, move from one schema to another without the

GCM losing information.
Complementariness is important because the way the

information is expressed benefits or impairs its under-

standing (Vessey, 1991). The different components of the

GCM can represent the same information, expressing it

either as a graph, table or text. This means that each

analysis process participant can select and use the best-

suited expression, either on the basis of previous expe-

rience or in accordance with current needs.
The proposed GCM components are as follows:

• Element maps: Information representation structures

belonging to a given knowledge domain or problem.

Element maps are variations on the conceptual maps,

derived from the work of Ausubel on Learning The-

ory and Psychology, later formalised by Novak and

Gowin (1984). We use the term �element maps� in-
stead of �concepts maps�, because �concept� is a over-

loaded word in SE. For example, �concept� is often

used to mean �data�. When we use �element�, we are

talking about �static concepts�, like data, rules or

facts, but also about �dynamic concepts�, like pro-

cesses, events, and so on.

Conceptual maps (as employed in psychology) can be

used to express and graphically represent concepts and
associations between concepts as a hierarchical struc-

ture. Element maps differ from conceptual maps used in

Psychology on three essential points: (1) they are gen-

erally structured as a complex graph and not necessarily

hierarchically; (2) both the concepts (elements in our

approach) and the associations, which represent estab-

lished knowledge in conceptual maps, are likely to

evolve over time as the analysis progress and (3) some
special concepts (elements in our approach) and asso-

ciations have been defined to restrict the spectrum of

possible readings of the elements map for the purpose of

raising the efficiency of POAM application.

• Dictionaries: Tabulated information representation

schemas. Dictionaries have a set of predefined fields

that define what sort of information they record.

There are two main types of dictionaries:
� Identificative dictionary (or glossary): This dictio-

nary merely records the information required to
recognise a element or association appearing while

investigating the problem and to distinguish one

element or association from another.

� Descriptive dictionary: Its goal is to record negoti-

ated information about elements and associations,

that is, information that all the participants in the
analysis process agree to be true. This information

is, additionally, practically complete, that is, all the

important aspects of the problem and its solution

will have been identified and recorded if this dictio-

nary has been correctly built.

• Narrative description: Natural language text that

describes the information recorded in the elements

map and the dictionaries. The narrative description
can be automatically derived from the elements map

and dictionaries (although the result is not a literary

masterpiece), which has some clear benefits for model

validation. The text is very understandable for end

users and, as there is a bijective relationship between

the narrative description and the other representation

schemas, the comments and corrections made by the

users can be fed back into those schemas.

The three above-mentioned representation schemas

are used during the POAM process activities and steps.

The POAM process is described below.

3.2. Generic conceptual model development process

There are two points of inflection during analysis,
each determined by its goals, that is: (1) move from ig-

norance to an understanding of the problem to be

solved, which should be reflected in the creation of CMs,

and (2) go from an understanding of the problem to a

solution characterization, which moves from a very

abstract level in the early stages of analysis (some re-

strictions, characteristics, etc., of the future software

system) to a more concrete formulation as the devel-
oper�s knowledge about the problem increases (a list of

the desired software system features). Therefore, the

proposed process is composed of two activities, as

shown in Fig. 1(a). The two activities differentiate two

states in analysis: a problem-oriented state and a solu-

tion-oriented state.

The goal of the first activity, called problem-oriented

analysis, is to understand the problem to be solved and
ends when the GCM, which represents the acquired

knowledge, has been developed. This GCM is the input

for the second activity, called software-oriented analysis,

whose goal is to identify which typically used CM is best

suited for representing the problem, as well as to

transform the GCM into the above-mentioned CM.

This first level of decomposition is too general to

guide a developer as to how to perform analysis.
Therefore, both activities are divided into two steps, as

shown in Fig. 1(b), which are further broken down into
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detailed tasks. Thus, problem-oriented analysis is de-

composed into the following steps:

• Preliminary analysis: In this step, the problem is ex-

amined superficially with the aim of defining a prelim-

inary model. The goals of this step are to (1) identify

the most important elements of the problem domain;

(2) describe these elements; and (3) organise all the

elements of the problem domain into a structure,

by means of which to define the associations there

are among these elements.

• Comprehensive analysis: In this step, the problem is

studied in as much detail as required to develop the
comprehensive model, that is, the complete GCM.

The goals of this step are to (1) check that the impor-

tant problem elements have been identified; (2) de-

scribe the above elements exhaustively and (3)

clearly determine the associations among elements.

In the above paragraphs, we introduced the concepts

of preliminary and comprehensive models. The prelimi-

nary model is a simplified version of the GCM, obtained
after the preliminary analysis, which is composed of (1) a

elements map––usually hierarchical and not generally a

graph, (2) identificative dictionary and (3), narrative

descriptions. The comprehensive model, that is, the

complete GCM output at the end of the comprehensive
analysis, differs from the preliminary model in that (1)

the elements map is more detailed and is generally a

graph, (2) the descriptive dictionary is used instead of

the identificative dictionary and (3) the narrative de-
scription is optional and is usually excluded.

Having completed the problem-oriented analysis, we

will get an exhaustive description of all the important

problem elements and of the spectrum of associations

between these elements. This information, contained in

the GCM, is of intrinsic value, as it helps developers and

other participants in analysis to understand the prob-

lem, which is one of the key objectives of analysis.
Using the proposed approach, however, we can go

even further to derive, from the information contained

in the GCM, a CM by means of which to continue

software system development using any of the develop-

ment approaches now available, such as structured,

object-oriented or real-time approaches. That CM is

derived in the software-oriented analysis activity. This

activity is decomposed into two steps.
� Identification of the suitable conceptual model: In

this step, we identify the suitable conceptual model

(SCM). The SCM is the target CM that can represent all

the information gathered in the GCM for a given

problem more fully.

An interpretation procedure has to be applied to

the GCM to identify the SCM. The interpretation
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procedure can be used to rewrite the GCM from a

computational viewpoint, that is, to assign builders used

by the classical CMs to the constituent elements of the

GCM, which in turn form the building blocks of com-

puter systems.

We have used a requirements representation formal-
ism proposed by Davis et al. (1997) for rewriting pur-

poses, although it has been profoundly modified for use

with the GCM. This formalism, termed ‘‘canonical

model’’, in accordance with its author�s intent, provides

a set of building blocks that can be used to represent the

information contained in a range of CMs. This means

that it can be used as a lingua franca, which averts, as

explained below, having to deal with each CM sepa-
rately.

The interpretation procedure, therefore, involves as-

signing a computational interpretation to each of the

building blocks of the GCM or, in other words, as-

signing each GCM element to one of the canonical

model elements.

This assignation will be totally formalised and engi-

neer independent, unless any ambiguities arise in the
assignation. Ambiguity is the possibility of assigning

two or more elements of the canonical model to any

given GCM element. In this case, it is the engineer who

has to decide, depending on the semantics of the GCM

and the canonical model, which particular interpretation

is the best suited.

After interpretation, the GCM is called the require-

ments canonical model (RCM), as the GCM can now be
read in computational terms, as a description of what

should be future software system operation. After out-

putting the RCM, we can determine the SCM.

The SCM will be the CM that is capable of repre-

senting most RCM propositions. We have defined a

measure, called fitness, to give a quantitative value of

suitability. Fitness is defined as the ratio between the

propositions a given CM can represent and the total
number of RCM propositions. Accordingly, the SCM is

the CM with the highest fitness value.

Additionally, this measure provides supplementary

information, namely, the extent to which the SCM is

suitable. For example, a CM may be suitable (that is, be

the best of all the models) and still very partially rep-

resent the information gathered about the problem do-

main (in this case, low fitness values would be obtained).
Additionally, it can even establish what difference, in

terms of representation capability, there is between two

particular CMs (which would be the difference between

the respective fitness values).

� Derivation of the selected conceptual model: In this

step, the RCM is translated into the target CM.

We use a derivation procedure to generate the target

CM. The derivation procedure basically involves using a
set of derivation tables and rules. There are as many

tables as there are possible target CMs. Each derivation
table contains all the possible combinations of canonical

model elements that can be expressed in a given target

CM, along with the expression of this combination in

the particular format used by the CM in question

(graphs, text, tables, etc.).

As each GCM element has been labelled in the RCM
and we have calculated the fitness of the different CMs,

we can now refer to the appropriate derivation table and

use it to directly generate fragments of the target CM.

These fragments can later be assembled, unambigu-

ously, to finally output the correct target CM.

The derivation rules modulate the use of each deri-

vation table, altering the RCM in a controlled manner,

so that the target CM finally obtained resembles as
closely as possible a target CM developed independently

for the same problem.

The target CM obtained in the above step can be

refined by entering more information. However, this

refinement is neither direct, nor can it be formalised,

owing to the fact that the GCM cannot be interpreted

directly in computational terms. Therefore, the devel-

oper will have to select what knowledge to record in the
target CM and what to discard. Once complete, the

target CM will have the same drawbacks as CMs de-

veloped directly, that is, some knowledge about the

problem will have been lost and the target CM will be

linked to a given development approach. Nevertheless,

there is a big difference between filtering problem ele-

ments using the current and the proposed conceptual

modelling processes. With the development processes
now in use, developers do not take into account the

problem elements that are not compatible with the CM

used (DFD, use cases, etc.) before the problem is un-

derstood. Using the proposed approach, developers are

encouraged to study and record all the possible problem

perspectives in the GCM. Therefore, the loss of knowl-

edge occurs when the problem has been understood, thus

avoiding early decisions on how to solve the problem at
hand.
4. Conceptual modelling using our proposal

An example showing the steps of the proposed pro-

cess, as well as the use of the components of the GCM is

given in the next section. This example will illustrate all
the theory explained above. Suppose we have the fol-

lowing problem, set out in natural language:

Hospital 123 has two patient admission procedures.

The first is the admission of patients on a waiting list.

The second is the admission of patients who visit the

emergency department.

When a patient on a waiting list is admitted, the patient

is assigned a room on a ward depending on the com-
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plaint that is to be treated. For example, if a patient is

to undergo coronary by-pass surgery, the patient would

be assigned to a room on the cardiology ward.

The patients admitted from the waiting list are assigned

a reference physician. This physician can be any doctor

belonging to the speciality related to the complaint that

is to be treated.

On the other hand, patients who are admitted from the

emergency department are immediately treated prior to

any administrative procedure. Once treated, they are

assigned a room no later than three hours after admis-

sion, according to the same rules as patients admitted

from the waiting list. The only difference is that their

reference physician will be the doctor who treated them

in the emergency department rather than a physician of

any particular speciality.

At first glance, this problem could apparently be

modelled in several different ways. For example, given

the problem characteristics (objects present, transfor-
mation processes that seem to exist, etc.), a data flow

diagram would appear to be a suitable representation, as

would an entity/relationship or a class diagram. How-

ever, the use of POAM makes it unnecessary to hy-

pothesize, in this moment, which is the best-suited

diagram type. During analysis, the problem is modelled

using the GCM and, only later, before passing on to

design, will we decide which is the best-suited CM and,
depending on this decision, which development ap-
Hospital
123

Patients

admits

Waiting list

from

Patient on 
waiting listComplaint

Doctor

Ward

is assigned to 

is specialised in

suffers

Room

is assigned to

belongs to

is reference physician of

is admitted from

Fig. 2. Elements map output at the end
proach will be most effective for building the future

software product.

The first step of POAM is preliminary analysis. As

this is not a real case, but a test case where (1) the in-

formation is not acquired incrementally, as happens

during elicitation, (2) there are no ambiguities and (3)
complexity is controlled at minimum levels, the model-

ling output after preliminary analysis would be ap-

proximately as shown in Fig. 2.

Fig. 2 shows the preliminary element map. This map

shows the key elements present in the problem descrip-

tion (patients, doctors, rooms, wards, etc.), as well as the

key associations (a patient is admitted from the waiting

list or the emergency doctor is the reference physician of
an emergency patient). The preliminary element map is

easily confused, during preliminary analysis, with se-

mantic data models or class diagrams. However, this is

only a seeming similarity, as, in this intermediate step of

POAM, we have mainly described the structural aspects

of the problem, which are, precisely, the aspects on

which the above-mentioned conceptual models focus.

The preliminary elements map can be likewise ex-
pressed by means of the identificative dictionary, or

glossary, shown in Table 1 or by means of narrative text,

as shown in Table 2.

Note that each representation is similar to, while, at

the same time, slightly different from, the others. This is

due to the fact that each GCM representation mecha-

nism focuses on different aspects of the information

acquired. The element map highlights, primarily, the
associations between the different elements, whereas the
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of the preliminary analysis step.



Table 1

Identificative dictionary

Element Description

Hospital 123 Admits patients

Patients From waiting list

From emergency department

Waiting list patient Is assigned a room

Suffers complaint

Is admitted from waiting list

Emergency depart-

ment patient

Is assigned a room

Suffers complaint

Is admitted from emergency department

Doctor Is reference physician of waiting list patient

Is specialised in complaint

Emergency doctor Is reference physician of emergency depart-

ment patient

Is specialised in complaint

Treats patient in emergency department

Room Belongs to ward

Room Belongs to ward

Ward Is assigned to a complaint

Ward Is assigned to a complaint

Complaint

Complaint

The apparent duplication in recorded information (two different en-

tries for room, ward and complaint, are due to a GCM technicism: two

different elements in the elements map are considered different even if

they bear the same name. This rule prevents information loss, pri-

marily in the early stages of analysis, as information that appears to be

similar may turn out to be very different later.

Table 2

Narrative text

Hospital 123 admits patients from the waiting list or from the

emergency department

Waiting list patients are assigned a room and suffer a complaint and

are admitted from the waiting list

Emergency department patients are assigned a room and suffer a

complaint and are admitted from the emergency department

Doctor is the reference physician of the waiting list patient and is

specialised in the complaint

Emergency doctor is the reference physician of the emergency

department patient and is specialised in the complaint and treats

the emergency patient in the emergency department

Room belongs to ward

Ward is assigned to complaint

The text has been slightly (but not arbitrarily) modified to improve

readability.
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identificative dictionary emphasises the meaning of each

element. Finally, the narrative text locates elements and

associations at the same level, easing communication

with the less technically competent participants in the

analysis task.

The comprehensive analysis step outputs a higher

level of refinement in the information acquired about the

problem. This refinement is achieved by refining the ele-
ments and associations in the elements map. Of these

refinements, the distinction between sets and individu-

als, the identification of the properties of the different
elements and the addition of dynamic or time details

that may have been overlooked during preliminary

analysis are of special importance. The element map

output is shown in Fig. 3.

In any case, note that it is difficult to read the com-

prehensive element map in terms of any particular im-
plementation. This map takes the form of ‘‘spaghetti’’,

where structural, logical and dynamic aspects are mixed

coherently, which means that it can be expressed in a

variety of conceptual models at the same time. There-

fore, the comprehensive element map does not prede-

termine any particular implementation, rather it can be

used to rewrite the problem in a variety of different

ways, each suited to a particular development approach.
The interpretation procedure has to be applied to

identify the best-suited development approach. For this

purpose, it is preferable for the information recorded in

the comprehensive elements map to be transcribed to the

descriptive dictionary shown in Table 3. The descriptive

dictionary is obtained directly from the comprehensive

elements map after applying a set of formal transcrip-

tion rules (Dieste, 2003).
The descriptive dictionary provides a compact de-

scription of the information recorded in the compre-

hensive elements map, which makes it easier to apply the

interpretation procedure. This procedure is composed,

as mentioned above, of several steps, which are not

discussed for reasons of space. The final result of ap-

plying the interpretation procedure, that is, the RCM,

would be as shown in Table 4.
Several propositions have been interpreted by the

analyst in the RCM shown in Table 4, because several

links can be used between two elements of type Entity,

as shown in Table 5, which states all possible combi-

nations among elements and links. These propositions

have been interpreted by selecting the link closest to the

meaning of the association in each particular case.

Having output the RCM, the SCM is identified and
derived automatically. To identify the SCM, we have to

calculate how many RCM propositions can be expressed

in each of the classical conceptual models. They are

calculated using the identification tables. The identifi-

cation tables are complementary to Table 5, as they

identify what CM(s) can express each element–link–

element combination in Table 5. By way of an example,

Table 6 shows the identification table for the class dia-
gram.

Using the identification tables, the number of prop-

ositions supported by each CM can be calculated di-

rectly. This will compute the fitness of each model and,

finally, identify the SCM. Considering only the most

popular CMs, such as the data flow diagram (DFD), the

entity–relationship diagram (ER), the class diagram

(CD), the state transition diagram (STD), the statechart
(SCT) and use cases (UC), the fitness calculation would

be as shown in Table 7.
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Fig. 3. Comprehensive elements map.
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Table 7 shows that the SCM is the class diagram, as

its fitness is greater than all the CMs (at least, of all the

ones that have been considered in the SCM calculation)

and it can express 71% of all the RCM propositions.

If the class diagram is the SCM, the best-suited deve-

lopment approaches are all the ones that use a class
diagram, such as the different object-oriented appro-

aches.

Having identified the SCM, all we have to do now is

use the derivation tables and rules to get the target CM.

There are as many derivation tables and rules as there

are CMs (Dieste, 2003). These tables and rules can be

used to get fragments of the target CM from the prop-

ositions it expresses. For example, Table 8 shows the
derivation table for the class diagram (SCM for the

example introduced in this section).

For example, from the proposition:

Entity½notrepl� : Hospital 123 Rel : admits Entity½repl�
: Patients
We can get the fragment shown in Table 9, as the

derivation table contains an entry ‘‘Entity[repl] Rel

Entity[repl]’’.

The different fragments can then be assembled, un-

ambiguously, to get the final version of the diagram. In

the case discussed in the example, the diagram output is
shown in Fig. 4.

The diagram shown in Fig. 4 is not the best possible

class diagram, it is the class diagram that can be derived

from the GCM. This model can be later modified to

improve or complete diagram aspects, in order to make

the resultant class diagram clearer and simpler.
5. Validation

The proposed approach has been validated and

refined after running several case studies using POAM
and using the CMs prescribed by other development



Table 3

Descriptive dictionary

Statements

Sets Rooms

Wards

Complaints

Patients

Doctors_1

Doctors_2

Emergency doctors

Subsets Waiting list subs Patient

Emergency

dept

subs Patients

Doctors_2 subs Doctors_1

Emergency

doctors

subs Doctors_1

Individuals Complaint bel Complaints

Room bel Rooms

Patient_1 bel Waiting list

Patient_2 bel Emergency

Dept

Ward bel Wards

Doctor_1 bel Doctors_2

Doctor_2 bel Emergency

Doctors

Definitions

Index Definition

Propositions

Index Association Concept-1 Concept-2

1 Hospital 123 admits Patients

2 Doctors_2 is specialised in Complaint

3 Patient_1 suffers Complaint

4 Patient_1 is assigned Room

5 Ward has Rooms

6 Ward is assigned to Complaint

7 Doctor_1 is reference physi-

cian of

Patient_1

8 Doctor_2 treats in emergency

dept.

Patient_2

9 Doctor_2 is reference physi-

cian of

Patient_2

10 Patient_2 is assigned Room

11 Patient_2 suffers Complaint

12 p10 no later than 3 h
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approaches (structured, object-oriented and real-time

approaches).

The set of test cases used was representative of the

problems and situations typically encountered during

software systems development. Because the problem

classification schemas existing in the literature are not

very formal (Glass and Vessey, 1995), the design of the

test cases was guided by more formal CM classification
schemas (Webster, 1988; Zave, 1990; Davis, 1993; Blum,

1996). We used Davis� classification schema (Davis,

1993), as it is the simplest and, probably, the most

well known, to the point that it is practically isom-

orphorous with the three major types of development

approach (structured, object-oriented and real-time ap-

proaches).
Davis (1993) divides the models into three groups:

function-oriented, object-oriented and state-oriented

(hereinafter they are referred to as F, O and S models,

respectively). Each model type is suited for the problems

whose structure more or less matches the building

blocks of these models (that is, what can be termed F, O
and S problems, respectively). This can be used to rea-

sonably build test cases that are representative of these

problem types. Additionally, test cases can be built for

mixed problems (FO, FS, OS, FOS).

A total of seven test cases were designed (F, O, S, FO,

FS, OS and FOS types). These test cases were solved by

a series of subjects with differing software development

experience levels, which were divided into four different
sized groups, owing to availability problems:

• Four professors (control group––CG). The CG mem-

bers solved the test cases using the models of the three

development approaches (structured, object-oriented

and real-time approaches).

• Five developers experienced in at least one develop-

ment approach (structured, object-oriented or real-
time approaches). The developers formed test group

1 (TG1). The members of TG1 were allowed to use

the models they considered to be best suited to solve

the test cases.

• Eighteen graduate and post-graduate students (test

group 2––TG2). The members of TG2 could, like-

wise, use the classical approach that they felt was bet-

ter suited. This second group also had to fill in a
questionnaire containing several questions regarding

how well acquainted they were with the conceptual

model they selected, so that we could check whether

the selection was based on the problem features or

on the subjective preferences of each experimental

subject.

• Three graduate and postgraduate students (test group

3––TG3), who solved the test cases using POAM.

The aim of the CG was to verify that the design of the

test cases was not biased, that is, that each case really

corresponded with a F, O, S, FO, FS, OS or FOS

problem. The goal of TG1 and TG2 was to compare

POAM effectiveness against the usual way of selecting

CMs in software development by both experienced

practitioners and recently trained or nearly trained
professionals. Finally, the goal of TG3 was to study CM

selection using the proposed approach (POAM).

For every test case, we compared the CMs output

using the four different approaches (POAM, structured,

object-oriented and real-time), and we evaluated:

• That each test group belonged to the problem group

for which it was designed based on CG�s judgement
and comparing the models generated using the struc-

tured, object-oriented and real-time approaches.



Table 4

Requirements canonical model

Statements

Sets Entity[repl]: Rooms

Entity[repl]: Wards

Entity[repl]: Complaints

Entity[repl]: Patients

Entity[repl]: Doctors_1

Entity[repl]: Doctors_2

Entity[repl]: Emergency doctors

Subsets Entity[repl]: Waiting list Subs: subs Entity[repl]: Patient

Entity[repl]: Emergency dept. Subs: subs Entity[repl]: Patients

Entity[repl]: Doctors_2 Subs: subs Entity[repl]: Doctors_1

Entity[repl]: Emergency doctors Subs: subs Entity[repl]: Doctors_1

Individuals Entity[notrepl]: Complaint Bel: bel Entity[repl]: Complaints

Entity[notrepl]: Room Bel: bel Entity[repl]: Rooms

Entity[notrepl]: Patient_1 Bel: bel Entity[repl]: Waiting list

Entity[notrepl]: Patient_2 Bel: bel Entity[repl]: Emergency dept.

Entity[notrepl]: Ward Bel: bel Entity[repl]: Wards

Entity[notrepl]: Doctor_1 Bel: bel Entity[repl]: Doctors_2

Entity[notrepl]: Doctor_2 Bel: bel Entity[repl]: Emergency doctors

Definitions

Index Definition

Propositions

Index Association Concept-1 Concept-2

1 Entity[notrepl]: Hospital 123 Rel: admits Entity[repl]: Patients

2 Entity[repl]: Doctors_2 Rel: are specialised in Entity[notrepl]: Complaint

3 Entity[notrepl]: Patient_1 Rel: suffers Entity[notrepl]: Complaint

4 Entity[notrepl]: Patient_1 Rel: is assigned Entity[notrepl]: Room

5 Entity[notrepl]: Ward -Pof: has Entity[repl]: Room

6 Entity[notrepl]: Ward Rel: is assigned to Entity[notrepl]: Complaint

7 Entity[notrepl]: Doctor_1 Rel: is reference physician of Entity[notrepl]: Patient_1

8 Entity[notrepl]: Doctor_2 Rel: treats in emergency dept. Entity[notrepl]: Patient_2

9 Entity[notrepl]: Doctor_2 Rel: is reference physician of Entity[notrepl]: Patient_2

10 Entity[notrepl]: Patient_2 Rel: is assigned Entity[notrepl]: Room

11 Entity[notrepl]: Patient_2 Rel: suffers Entity[notrepl]: Complaint

12 p10 Constraint: no later than Value: 3 h

The numbers after the names of some elements (doctors, patient, etc.) are used to make a distinction between elements that have the same name in the

comprehensive elements map.
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• How effective TG1, TG2 and TG3 were in predicting

the best-suited conceptual model.

• The correctness and validity of the conceptual models

output by TG1, TG2 and TG3.

• The time it took TG1, TG2 and TG3 to develop the

conceptual models.

The results obtained so far appear to support the
following findings:

• The test cases were designed properly. The opinion of

the CG in this respect was unanimous, as it selected

the model for which the test case was designed (F,

O, S, etc.) in each case. Additionally, the selected

model was clearly the best suited when compared

against the other models (F, O, S, etc.) for the same
test case.

• Several points should be considered with respect to

effectiveness:
� The effectiveness of TG3 was 100%, where the

best-suited model was selected in all seven test

cases.

� The effectiveness of TG1 and TG2 was clearly

lower than TG3. With respect to TG1, only one

subject identified the best model for all the test

cases, whereas two members selected the correct

model in six cases and the other two in four of
the seven cases. With respect to TG2, only 33%

of the subjects identified the best model in all seven

test cases. Another 33% correctly identified six of

the seven test cases, and the other 33% came up

with the correct model in five or less cases. In mean

terms, the effectiveness of TG1 was 77% correctly

solved cases, whereas the effectiveness of TG2

was 83%.
� To check the claims made in this paper about soft-

ware developer tendentiousness and preferences

for a given development approach, we studied



Table 5

Possible combinations among elements and links when applying the interpretation procedure

Entity[repl] Entity[notrepl] Process Predicate Transition Message Constraint Value Statespace

Entity[repl] spec

subs

pof

rel

activate

Entity[notrepl] spec spec

pof pof

rel rel

bel activate

activate

Process pof pof spec

sends sends pof

receives receives activate

-activate -activate

Predicate operand operand activate operand

Transition stimulus stimulus stimulus

response response

Message -sends -sends -sends -operand -stimulus pof

-receives -receives -receives -response

Constraint -operand operand pof -operand -operand -operand operand

Value -operand -stimulus -operand -operand

-sends -sends -sends -response pof

-receives -receives -receives

pof

Statespace pof pof -sends -operand -stimulus -operand -operand hval pof

-sends -sends -receives -response spec

-receives -receives pof

Separate tables should be used when proportions are considered. The table is symmetric and, therefore, the top right-hand side is not shown.

Table 6

Identification table for the class diagram

Entity[repl] Entity[notrepl] Process Predicate Transition Message Constraint Value Statespace

Entity[repl] spec

subs

pof

rel

Entity[notrepl] spec spec

pof pof

rel rel

Process pof pof

Predicate

Transition

Message

Constraint

Value pof pof

Statespace pof pof

The table is symmetric and, therefore, the top right-hand side is not shown. The blank boxes indicate element–link–element combinations that are not

permitted in the class diagram.
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Table 7

Determination of conceptual model fitness

Models DFD ER DC DTE STC CU

Entity[repl]: Rooms
p p p p

Entity[repl]: Wards
p p p p

Entity[repl]: Complaints
p p p p

Entity[repl]: Patients
p p p p

Entity[repl]: Doctors_1
p p p p

Entity[repl]: Doctors_2
p p p p

Entity[repl]: Doctors
p p p p

Entity[repl]: Waiting list Subs: subs Entity[repl]: Patient
p

Entity[repl]: Emergeny

dept.

Subs: subs Entity[repl]: Patients
p

Entity[repl]: Doctors_2 Subs: subs Entity[repl]: Doctors_1
p

Entity[repl]: Emergency

doctors

Subs: subs Entity[repl]: Doctors_1
p

Entity[notrepl]: Complaint Bel: bel Entity[repl]: Complaints

Entity[notrepl]: Room Bel: bel Entity[repl]: Rooms

Entity[notrepl]: Patient_1 Bel: bel Entity[repl]: Waiting list

Entity[notrepl]: Patient_2 Bel: bel Entity[repl]: Emergency

dept.

Entity[notrepl]: Ward Bel: bel Entity[repl]: Wards

Entity[notrepl]: Doctor_1 Bel: bel Entity[repl]: Doctors

Entity[notrepl]: Doctor_2 Bel: bel Entity[repl]: Emergency

doctors

p1 Entity[notrepl]: Hospital

123

Rel: admits Entity[repl]: Patients
p p

p2 Entity[repl]: Doctors_2 Rel: are specialised in Entity[notrepl]: Complaint
p p

p3 Entity[notrepl]: Patient_1 Rel: suffers Entity[notrepl]: Complaint
p p

p4 Entity[notrepl]: Patient_1 Rel: is assigned Entity[notrepl]: Room
p p

p5 Entity[notrepl]: Ward -Pof: has Entity[repl]: Rooms
p

p6 Entity[notrepl]: Ward Rel: is assigned to Entity[notrepl]: Complaint
p p

p7 Entity[notrepl]: Doctor_1 Rel: is reference phy-

sician of

Entity[notrepl]: Patient_1
p p

p8 Entity[notrepl]: Doctor_2 Rel: treats in emer-

gency dept.

Entity[notrepl]: Patient_2
p p

p9 Entity[notrepl]: Doctor_2 Rel: is reference phy-

sician of

Entity[notrepl]: Patient_2
p p

P10 Entity[notrepl]: Patient_2 Rel: is assigned Entity[notrepl]: Room
p p

P11 Entity[notrepl]: Patient_2 Rel: suffers Entity[notrepl]: Complaint
p p

P12-1 Constraint: no later than Operand: P10

P12-2 Constraint: no later than Operand: Value: 3 h

Fitness 0.23 0.55 0.71 0.0 0.0 0.23

The division of proposition p12 into two propositions (p12-1 and p12-2) is called splitting and occurs when an association has to be interpreted in

logical or dynamic terms. The shading has been used to highlight the propositions that cannot be expressed in any of the conceptual models.
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the extent to which the experimental subjects al-

ways selected the same model during the experi-

ment. After an analysis of the data output, we

found that all (100%) of the subjects belonging

to TG1 select the same model in at least four of

the seven test cases (57% of cases). The models se-

lected by the subjects belonging to TG2 are more

dispersed. However, nine out of eighteen subjects
(50%) selected the same model in at least four of

the seven test cases (57%). On the other hand,

there is a balance between the models identified

as best suited by the members of TG3, and no par-

ticular model stands out.

� Finally, we studied how the conceptual tenden-

tiousness of the analyst distorts conceptual model
selection. Note that the modellers were given the

information obtained from an impartial elicitation

process in the seven cases studied. As mentioned

above, however, the conceptual preferences of an

analyst examining a domain act like glasses that

give preference to some aspects and disregard oth-

ers. To check this phenomenon, a special test case

was designed that simulated the activity of a ten-
dentious analyst eliciting information from a

domain about a problem not suited to his/her pref-

erences. As was to be expected, the tendentious

analyst gets information from the domain that

gives preference to the problem features that

match his/her preferences in detriment to the fea-

tures least suited to his/her view. This deformed



Table 8

Derivation table for the class diagram

Element (A) Link (B) Element (C) Derives Element (A) Link (B) Element (C) Derives

Entity[repl] Spec Entity[repl]

:C

:A

Entity[repl] Receives Message

:C

:A

Entity[repl] Pof Entity[repl]

:C

:A

Statespace Pof Entity[repl]

:C

:A

Entity[repl] Subs Entity[repl]
:C

:A

Entity[repl] Rel Entity[repl]

:C

:A

B

Rules:

1. If an element of type Entity[notrepl] also belongs (Bel) to an element of type Entity[repl], then replace it with latter

2. If an element of type Entity[repl] is a subset of (Subs) an element of type Entity[repl], then replace it with the latter

3. If an element Entity[notrepl] satisfies neither rule (2) or (3), consider whether it can be considered coherently as Entity[repl]

We consider only a fragment of the table, which has more entries than shown.

Table 9

Derivation of a fragment of the SCM from the proposition En-

tity[notrepl]: Hospital 123 Rel: admits Entity[repl]: Patients

Element (A) Link (B) Element (C) Derives

Entity[notrepl]:

Hospital 123

Rel:

admits

Entity[repl]:

Patients :Patients

:Hospital 123

admits

Note that the class diagram derivation rule (3) has been applied,

considering Entity[notrepl]: Hospital 123 as Entity[repl]: Hospital 123.
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information was delivered to all the test groups.

CG, TG1 and TG2 selected the model preferred

by the analyst (even though it was not suited to

the problem), whereas TG3 (POAM) was not in-

fluenced by the analyst and selected the best-suited

model. Note that the analyst�s tendentiousness
managed to deceive the expert modellers, as they

were unable to stop their decision from being influ-

enced by falsely upgraded aspects (to which more

importance was attached, more space allotted,
etc., in the elicited information) as opposed to fal-

sely downgraded aspects (which, although they ap-

peared in the elicited information, were checked by

the elicitor�s preferences).

• The validity of the CM obtained using POAM is

greater than the CMs constructed using classical ap-

proaches. The reason appears to be that students gain

a better understanding of the problem by performing
the preliminary analysis and comprehensive analysis

sub-activities. Having a better understanding, they

are able to create not only a syntactically correct,

but also a semantically coherent SCM. Using struc-

tured, object-oriented or real-time approaches,

students tend to subordinate understanding to repre-

sentation, outputting semantically ambiguous, albeit

syntactically correct, conceptual models.
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Fig. 4. Final SCM (class diagram).
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• It takes longer to develop the conceptual model using

POAM. This was a foreseeable point in view of the

increased workload involved in subdividing analysis.

However, many of the POAM steps can be auto-

mated, either fully or partially, which means that a

suitable automated support could help to compensate

for the additional workload caused by the proposed
approach.

From the above results, we can state that POAM is a

more effective approach to conceptual modelling than

the classical development approaches (structured, ob-

ject-oriented and real-time approaches). The only

shortcomings of POAM appear to be related to the time

it takes to build the generic conceptual model and
identify and derive the classical conceptual models.

However, this shortcoming refers to the efficiency and

not to the effectiveness of the proposed approach. With

the aim of improving POAM efficiency, we are now

developing a software tool to support the proposed

process, as many of the steps can, for the most part, be

automated. This tool should improve POAM efficiency

so that it can be used in real development projects,
where efficiency considerations are often just as or more

important than questions of effectiveness.
6. Conclusions

RE is now one of the most significant activities in

software development. This importance derives from the

fact that it is during requirements engineering that the

problem to be solved is examined and the features that

the future software system will implement are deter-
mined. The study of the problem to be solved depends,

largely, on conceptual models. These models, such as

data flow diagrams or class diagrams, can be used to

represent information about the problem to be solved.

However, these models have several shortcomings, such

as computational bonds and the predetermination of a

given design type.

With the objective of providing a solution to the
above-mentioned shortcomings, a method called ‘‘prob-

lem-oriented analysis method’’ (POAM) has been pro-

posed. This method uses a set of CMs, grouped in the

‘‘Generic Conceptual Model’’, which have a high rep-

resentation capability and are suited for modelling a

wide range of domains. Additionally, the computational

bonds have been minimised or totally removed, which

means that the modelling is free of any computational
consideration that predetermines a given design type.

Finally, from the GCM, it is possible to select the best
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development approach from all those now available and

derive the conceptual models used by the above ap-

proach.

The validation carried out to check POAM effec-

tiveness has shown that the proposed approach is ef-

fective and it even performs better than practitioners
experienced in conceptual modelling. In particular,

POAM avoids subjective selection based on the prefer-

ences and opinions of the conceptual model developers,

making an objective selection of the best-suited con-

ceptual model to represent a given problem.
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